Abstract

Changing climate and land-use practices influencing the natural stream flow processes in the Naryn river basin of Kyrgyzstan. Variations in stream flow regime over 33-years (1980 to 2012) were investigated using daily discharge data of three hydro-stations (Naryn, Ych-Terek and Uzunakmat), located in the Naryn River Basin. Mean monthly discharge (MMD), mean annual discharge (MAD), standard deviation (SD) and coefficient of variation (CV) were calculated to know the spatio-temporal variability. Similarly, Pearson’s correlation coefficient (r) was used to know the relationship between discharge and rainfall. Advanced time-series graph, exceedance probability and frequency distribution were computed using Hydrognomon (V.4.0.3) software to observe the variability and trends in discharge. The results from statistical calculations and software-based computations highlight the monthly, annual, and long term spatio-temporal discharge variability, extreme events, distribution and changes in stream flow records. This study preciously creates the frequency and trends of seasonal discharge, annual discharge cycle, and range of highest and lowest discharge flows. The weak and negative relationship (-0.2121, -0.4238) between rainfall and discharge propose for more investigation of climatic parameters and the topography of Tian Shan Mountain perhaps influencing discharge variability due to melting of glacier at high altitude. The flow regime of the Naryn river basin over the past 33-years perhaps changed due to climatic fluctuations, with the seasonal snowmelt timing (Post-Spring, Summer, Pri-Autumn), precipitations period (March-October), and large-scale land-use alterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call