Abstract

Bilayer electrode, composed of a current collector layer and an active material layer, has great potential in applications of in-situ electrochemical experiments due to the bending upon lithiation. This paper establishes an elastoplastic theory for the lithiation induced deformation of bilayer electrode with consideration of the plastic yield of current collector. It is found that the plastic yield of current collector reduces the restriction of current collector to an active layer, and therefore, enhances in-plane stretching while lowers down the rate of electrode bending. Key parameters that influence the elastoplastic deformation are identified. It is found that the smaller thickness ratio and lower elastic modulus ratio of current collector to an active layer would lead to an earlier plastic yield of the current collector, the larger in-plane strain, and the smaller bending curvature, due to balance between the current collector and the active layer. The smaller yield stress and plastic modulus of current collector have similar impacts on the electrode deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.