Abstract

Slow transit constipation (STC) is a refractory gastrointestinal disease, accounting for approximately 13 ∼ 37 % of chronic constipation. However, the molecular mechanism of STC remains poorly understood. Herein, this study aims to identify the key mRNAs and lncRNAs associated with STC. To this end, we performed high-throughput RNA sequencing to identify differentially expressed (DE) mRNAs and lncRNAs in the whole-layer sigmoid intestinal tissues from 4 STC patients and 4 non-STC patients. The identified DE lncRNAs and mRNAs were validated through quantitative real-time PCR. Weighted gene co-expression network analysis (WGCNA) and Pearson correlation analysis were conducted to determine the significantly correlated DE mRNA-lncRNA pairs. A total of 1420 DE lncRNAs and 1634 DE mRNAs were identified. Kyoto Encyclopedia of Genes and Genomes analysis of DE mRNAs indicated that these DE mRNAs might be associated with systemic lupus erythematosus, alcoholism, intestinal immune network for IgA production, inflammatory bowel disease, NF-kappa B signaling pathway. WGCNA and Pearson correlation analyses jointly identified 16,577 significantly correlated DE mRNA-lncRNA pairs. Furthermore, lncRNAs LINC00641, LINC02268, LINC03013 were identified as hub lncRNAs. The protein–protein interaction (PPI) network of proteins encoded by DE mRNAs was established, and PPI-based analysis revealed that Interleukin 2(IL2), CD80 molecule (CD80), interleukin-17A (IL-17A) might play significant roles in the development of STC. This study analyzes the expression profiles of lncRNAs and mRNAs associated with STC. Our findings will contribute to further understanding of the molecular mechanism of STC and provide potential diagnostic or therapeutic biomarkers for STC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.