Abstract

BackgroundPrunus triloba Lindl. is a naturally salt-alkaline-tolerant plant with several unique characteristics, and it can be used as the rootstock of Chinese plum (Prunus salicina Lindl.) in saline-alkaline soils. To comprehensively investigate the alkaline acclimation mechanisms in P. triloba, a series of analyses were conducted under alkaline stress, including analyses of the kinetics of molecular and physiological changes, and leaf microstructure.ResultsTo understand the kinetics of molecular changes under short-term alkaline stress, we used Illumina HiSeq 2500 platform to identify alkaline stress-related differentially expressed genes (DEGs) in P. triloba. Approximately 53.0 million high-quality clean reads were generated from 59.6 million raw reads, and a total of 124,786 unigenes were obtained after de novo assembly of P. triloba transcriptome data. After alkaline stress treatment, a total of 8948 unigenes were identified as DEGs. Based on these DEGs, a Gene Ontology (GO) enrichment analysis was conducted, suggesting that 28 genes may play an important role in the early alkaline stress response. In addition, analysis of DEGs with the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that pathways were significant at different treatment time points. A significant positive correlation was found between the quantitative real-time PCR (qRT-PCR) results and the RNA-Seq data for seven alkaline-related genes, confirming the reliability of the RNA-Seq results. Based on physiological analysis of P. triloba in response to long-term alkaline stress, we found that the internal microstructures of the leaves of P. triloba changed to adapt to long-term alkaline stress. Various physiological indexes indicated that the degree of membrane injury increased with increasing duration of alkaline stress, affecting photosynthesis in P. triloba seedlings.ConclusionsThis represents the first investigation into the physiology and transcriptome of P. triloba in response to alkaline stress. The results of this study can enrich the genomic resources available for P. triloba, as well as deepening our understanding of molecular and physiological alkaline tolerance mechanisms in P. triloba. This will also provide new insights into our understanding of alkaline acclimation mechanisms in Chinese plum (Prunus salicina) trees.

Highlights

  • Prunus triloba Lindl. is a naturally salt-alkaline-tolerant plant with several unique characteristics, and it can be used as the rootstock of Chinese plum (Prunus salicina Lindl.) in saline-alkaline soils

  • When the height of seedlings reached to about 15 cm, 120 plantlets with similar size and growth, housing outdoor with a transparent plastic film at the top to keep out the rain, were selected to subject to alkaline stress treatments as the test materials, and other 30 plantlets were selected as control group

  • De novo transcriptome analysis of P. triloba in response to short-term alkaline stress Sequence analysis and assembly In this study, we used the Illumina HiSeq 2500 platform to obtain a total of 595,894,216 raw P. triloba reads during different stages of alkaline stress

Read more

Summary

Introduction

Prunus triloba Lindl. is a naturally salt-alkaline-tolerant plant with several unique characteristics, and it can be used as the rootstock of Chinese plum (Prunus salicina Lindl.) in saline-alkaline soils. Is a naturally salt-alkaline-tolerant plant with several unique characteristics, and it can be used as the rootstock of Chinese plum (Prunus salicina Lindl.) in saline-alkaline soils. The central hill area in the Sichuan Basin is the main planting region for plum trees in China, and it widely consists of calcareous purple soils. Iron chlorosis occurs in regions with alkaline soil; when fruit trees are under alkaline stress for an extended period of time, they grow poorly, fail to grow flowers or fruits, and may even die, having a detrimental effect on the fruit tree industry [2]. Because the rootstock variety directly affects the fruiting time, yield, and lifetime of fruit trees, so the screening of alkaline-tolerant rootstocks is an effective way to improve the alkaline resistance of fruit trees

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.