Abstract
The aim of this study was to carry out a systematic investigation and analysis of different drug extraction methods, specifically non-steroidal anti-inflammatory drugs in biological fluid samples, for Liquid Chromatography in Mass Spectrometry assays (LC-MS/MS). A search was carried out in the main databases between 1999 and 2021, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist. Data were obtained through PubMed, Lilacs, Embase, Scopus, and Web of Science databases using the Boolean operators AND and OR. Studies were pre-selected by title and abstract by two independent reviewers. The selected texts were read in full, and only those that were complete and compatible with the inclusion and exclusion criteria were eligible for this research. A total of 248 references were obtained in the databases. After removing the duplicates and analyzing the titles and abstracts, 79 references were evaluated and passed to the next phase, which comprised the complete reading of the article. A total of 39 publications were eligible for this study. In 52% of the studies, the authors used the liquid–liquid extraction method (LLE), while in 41%, the solid-phase extraction method (SPE) was used. A total of 5% used microextraction methods and 2% used less-conventional techniques. The literature on the main methods used, the LLE and SPE methods, is extensive and consolidated; however, we found other studies that reported modifications of these traditional techniques, which were equally validated for use in LC-MS/MS. From this review, it is concluded that the diversity of techniques, reliability, and practical information about each analytical method used in this study can be adapted to advances in LC-MS/MS techniques; however, more ecological, economic, and sustainable approaches should be explored in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.