Abstract

The space radiation environment has a radiation effect on electronic devices, especially the total ionizing dose effect, which seriously affects the service life of spacecraft on-orbit electronic devices and electronic equipment. Therefore, it is particularly important to enhance the radiation resistance of electronic devices. At present, many scientific research institutions still use the areal density equivalent aluminum method to calculate the shielding dose. This paper sets five common metal materials in aerospace through the GEANT4 Monte-Carlo simulation tool MULASSIS, individually calculating the absorption dose caused by single-energy electrons and protons in the silicon detector after shielding of five different materials, which have the same areal density of 0.8097 g/cm2. By comparing the above data, it was found that depending on the particle energy, the areal density aluminum equivalent method would overestimate or underestimate the absorbed dose in the shielded silicon detector, especially for the ionization total dose shielding effect of low-energy electrons. The areal density aluminum equivalent method will greatly overestimate the shielding dose, so this difference needs to be taken into account when evaluating the ionizing dose of the electronics on a spacecraft to make the assessment more accurate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call