Abstract
At present, diabetes is one of the most important chronic noncommunicable diseases, that have threatened human health. By 2020, the number of diabetic patients worldwide has reached 425 million. This amazing number has attracted the great attention of various countries. With the progress of computing technology, many mathematical models and intelligent algorithms have been applied in different fields of health care. 822 subjects were selected in this paper. They were divided into 389 diabetic patients and 423 nondiabetic patients. Each of the subjects included 41 indicators. Too many indicator variables would increase the computational effort and there could be a strong correlation and data redundancy between the data. Therefore, the sample features were first dimensionally reduced to generate seven new features in the new space, retaining up to 99.9% of the valid information from the original data. A diagnostic and classification model for diabetes clinical data based on recurrent neural networks were constructed, and particle swarm optimization (PSO) was introduced to optimise recurrent neural network's hyperparameters to achieve effective diagnosis and classification of diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.