Abstract
BackgroundComputer-aided segmentation and border detection in dermoscopic images is one of the core components of diagnostic procedures and therapeutic interventions for skin cancer. Automated assessment tools for dermoscopy images have become an important research field mainly because of inter- and intra-observer variations in human interpretation. In this study, we compare two approaches for automatic border detection in dermoscopy images: density based clustering (DBSCAN) and Fuzzy C-Means (FCM) clustering algorithms. In the first approach, if there exists enough density –greater than certain number of points- around a point, then either a new cluster is formed around the point or an existing cluster grows by including the point and its neighbors. In the second approach FCM clustering is used. This approach has the ability to assign one data point into more than one cluster.ResultsEach approach is examined on a set of 100 dermoscopy images whose manually drawn borders by a dermatologist are used as the ground truth. Error rates; false positives and false negatives along with true positives and true negatives are quantified by comparing results with manually determined borders from a dermatologist. The assessments obtained from both methods are quantitatively analyzed over three accuracy measures: border error, precision, and recall. ConclusionAs well as low border error, high precision and recall, visual outcome showed that the DBSCAN effectively delineated targeted lesion, and has bright future; however, the FCM had poor performance especially in border error metric.
Highlights
Melanoma is the fifth most common malignancy in the United States and has rapidly become one of the leading cancers in the world
We reported precision and recall for each experimental image in Table 1 and Table 2 for results generated with DBSCAN and Fuzzy C-Means (FCM) respectively
A fast density based algorithm DBSCAN is introduced for dermoscopy imaging
Summary
Each approach is examined on a set of 100 dermoscopy images whose manually drawn borders by a dermatologist are used as the ground truth. Error rates; false positives and false negatives along with true positives and true negatives are quantified by comparing results with manually determined borders from a dermatologist. The assessments obtained from both methods are quantitatively analyzed over three accuracy measures: border error, precision, and recall
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.