Abstract

Rapid Single Flux Quantum (RSFQ) computing is a developing technology that enables high speed comput- ing such as microprocessors, network routers and analog to digital converters. However, as the complexity and the com- puting speed of these circuits increase, timing errors of in- dividual gates become more relevant. Most of these timing errors occur on the signal distribution path due to the use of a large number of wiring cells but these effects are mostly ignored. Hence future circuit optimization tools should take both delay and jitter amount into account. Therefore, delay and jitter values of single and cascaded fundamental RSFQ wiring cells, namely Josephson transmission lines (JTL), splitters, and mergers, are analyzed. Also, low bias voltage driving of the circuit and the dependence on input signal fre- quency effects are observed. In conclusion, jitter and delay values depending on the aforementioned parameters for sin- gle gates and cascaded gates are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.