Abstract

Biodegradable metallic materials are increasingly gaining ground in medical applications. Zn-based alloys show a degradation rate between those recorded for Mg-based materials with the fastest degradation rate and Fe-based materials with the slowest degradation rate. From the perspective of medical complications, it is essential to understand the size and nature of the degradation products developed from biodegradable materials, as well as the stage at which these residues are eliminated from the body. This paper presents investigations conducted on the corrosion/degradation products of an experimental material (ZnMgY alloy in cast and homogenized state) after immersion tests in three physiological solutions (Dulbecco's, Ringer's and simulated body fluid (SBF)). Scanning electron microscopy (SEM) was used to highlight the macroscopic and microscopic aspects of corrosion products and their effects on the surface. An X-ray energy dispersive detector (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) provided general information about the compounds based on their non-metallic character. The pH of the electrolyte solution was recorded for 72 h during immersion. The pH variation of the solution confirmed the main reactions proposed for the corrosion of ZnMg. The agglomerations of corrosion products were on the micrometer scale, mainly oxides, hydroxides and carbonates or phosphates. The corrosion effects on the surface were homogeneously spread, with a tendency to connect and form cracks or larger corrosion zones, transforming the pitting corrosion pattern into a generalized one. It was noticed that the alloy's microstructure strongly influences the corrosion characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.