Abstract

ABSTRACTThe elasto-plastic finite element method using a yield criterion advanced by Lee and Kim was employed to analyze the effect of indenting geometry on the Brinell hardness of sintered porous copper specimens with various densities. The changes in geometry of porous iron rings with various initial relative densities were also calculated for various friction coefficients between the metal rings and compression platens. The calculated hardness values were in very good agreement with the measured data. The friction coefficient could be determined from the relationship between the change in the inner diameter and height reduction of porous metal rings with various initial relative densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.