Abstract

AbstractTensegrity structures are prestressed structures consisting of compressed members connected by prestressed tensioned members. Due to their properties, such as flexibility and lightness, mobile robots based on these structures are an attractive subject of research and are suitable for space applications. In this work, a mobile robot based on a tensegrity structure with two curved members connected by eight tensioned strings is analyzed in terms of deformation in the curved members. Further, the difference in locomotion trajectory between the undeformed and deformed structure after the prestress is analyzed. For that, the theory of large deflections of rod-like structures is used. To determine the relationship between acting forces and the deformation, the structure is optimized using minimization algorithms in Python. The results are validated by parameter studies in FEM. The analysis shows that the distance between the two curved members significantly influences the structure’s locomotion. It can be said that the deformation of the components significantly influences the locomotion of tensegrity structures and should be considered when analyzing highly compliant structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call