Abstract
Light-weight and environmentally friendly materials with good mechanical properties are much appreciated in various modern applications. Weight reduction can improve the performance of many components while reducing the fuel consumption of vehicles. Magnesium is one of the most popular weight-reducing materials because of its low density, good mechanical properties, large natural reserves and good machining properties. The strength, stiffness and favourable metallographic structure of products can be improved by a forging process in which components are shaped from feedstock slugs by applying compressive force through various forging dies. However, widespread usage of forging technology in industrial practice is very rare in comparison to casting, due to the specific deformation characteristics of magnesium having a hexagonal close packed basal crystal structure. This paper deals with the determination of the influence of the most important process parameters on the deformation process of magnesium alloys. On the basis of extensive experimental study, anisotropic flow and the impact of the most important input process factors on the plastic deformation of AZ80 wrought alloy are considered. The results presented in this paper are directly related to industrial practice and have significant potential as a case study for the further development of FEM models capable of predicting anisotropic material flow during applied plastic deformation. The studies presented in the paper also make possible defining recommended technological parameters of the forging process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Strojniski Vestnik-journal of Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.