Abstract
Positive margin status after breast-conserving surgery (BCS) is a predictor of higher rates of local recurrence. Intraoperative margin assessment aims to achieve negative surgical margin status at the first operation, thus reducing the re-excision rates that are usually associated with potential surgical complications, increased medical costs, and mental pressure on patients. Microscopy with ultraviolet surface excitation (MUSE) can rapidly image tissue surfaces with subcellular resolution and sharp contrasts by utilizing the nature of the thin optical sectioning thickness of deep ultraviolet light. We have previously imaged 66 fresh human breast specimens that were topically stained with propidium iodide and eosin Y using a customized MUSE system. To achieve objective and automated assessment of MUSE images, a machine learning model is developed for binary (tumor vs. normal) classification of obtained MUSE images. Features extracted by texture analysis and pre-trained convolutional neural networks (CNN) have been investigated for sample descriptions. A sensitivity, specificity, and accuracy better than 90% have been achieved for detecting tumorous specimens. The result suggests the potential of MUSE with machine learning being utilized for intraoperative margin assessment during BCS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of SPIE--the International Society for Optical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.