Abstract

Nominally undoped GaN layers grown by molecular beam epitaxy (MBE) and having resistivities between 105 and 107 Ω were investigated with temperature- and frequency-dependent admittance spectroscopy. The advantage of these measurement methods is shown in terms of the formation of Schottky contacts on high-resistivity GaN layers. The space-charge region, which is needed for detection of deep defects exists at low frequencies only and, therefore, deep level transient spectroscopy (DLTS) measurements fail for this material. Two deep defect levels were identified in MBE-grown GaN layers. The thermal activation energies are (0.45±0.04) and (0.63±0.04) eV, respectively. These deep traps are well known from DLTS and thermal stimulated conductivity measurements in metalorganic vapor phase epitaxy and hydride vapor phase epitaxy-grown GaN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.