Abstract

The land surface temperature (LST) pattern is regarded as one of the most important indicators of the environmental consequences of land use/land cover change. The possible contribution of land surface to the warming phenomenon is being investigated by scientists across the world. This research focuses on variations in surface temperature and urban heat islands (UHIs) over the course of two seasons, i.e., winter and summer. Using remotely sensed datasets and geospatial techniques, an attempt was made to analyze the spatiotemporal variation in urban heat islands (UHIs) and its association with LULC over Chandigarh from 2000 to 2020. The Enhanced Built-up and Bareness Index (EBBI), Dry Built-up Index (DBI), and Dry Bare-Soil Index (DBSI) were used to identify built-up areas in the city. The results revealed an increase of 10.08% in BA, whereas the vegetation decreased by 4.5% over the study period, which is in close agreement with the EBBI, DBI, and DBSI assessments. From 2000 to 2020, the UHI intensities increased steadily in both the summer and winter seasons. Dense built-up areas such as the industrial unit of the city possessed the highest UHIindex (>0.7) values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.