Abstract

AbstractOn 24 May 2016, a supercell that produced 13 tornadoes near Dodge City, Kansas, was documented by a rapid-scanning, X-band, polarimetric, Doppler radar (RaXPol). The anomalous nature of this storm, particularly the significant deviations in storm motion from the mean flow and number of tornadoes produced, is examined and discussed. RaXPol observed nine tornadoes with peak radar-derived intensities (ΔVmax) and durations ranging from weak (~60 m s−1) and short lived (<30 s) to intense (>150 m s−1) and long lived (>25 min). This case builds on previous studies of tornado debris signature (TDS) evolution with continuous near-surface sampling of multiple strong tornadoes. The TDS sizes increased as the tornadoes intensified but lacked direct correspondence to tornado intensity otherwise. The most significant growth of the TDS in both cases was linked to two substantial rear-flank-downdraft surges and subsequent debris ejections, resulting in growth of the TDSs to more than 3 times their original sizes. The TDS was also observed to continue its growth as the tornadoes decayed and lofted debris fell back to the surface. The TDS size and polarimetric composition were also found to correspond closely to the underlying surface cover, which resulted in reductions in ZDR in wheat fields and growth of the TDS in terraced dirt fields as a result of ground scouring. TDS growth with respect to tornado vortex tilt is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call