Abstract

The dark-relaxation kinetics of variable fluorescence, Fv, in intact green leaves of Pisum stativum L. and Dolichos lablab L. were analyzed using modulated fluorometers. Fast (t1/2 = 1 s) and slow (t1/2 = 7-8 s) phases in fv dark-decay kinetics were observed; the rate and the relative contribution of each phase in total relaxation depended upon the fluence rate of the actinic light and the point in the induction curve at which the actinic light was switched off. The rate of the slow phase was accelerated markedly by illumination with far-red light; the slow phase was abolished by methyl viologen. The halftime of the fast phase of Fv dark decay decreased from 250 ms in dark-adapted leaves to 12-15 ms upon adaptation to red light which is absorbed by PSII. The analysis of the effect of far-red light, which is absorbed mainly by PSI, on Fv dark decay indicates that the slow phase develops when a fraction of QA (-) (the primary stable electron acceptor of PSII) cannot transfer electrons to PSI because of limitation on the availability of P700(+) (the primary electron donor of PSI). After prolonged illumination of dark-adapted leaves in red (PSII-absorbed) light, a transient. Fv rise appears which is prevented by far-red (PSI-absorbed) light. This transient fv rise reflects the accumulation of QA (-) in the dark. The observation of this transient Fv rise even in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone (CCCP) indicates that a mechanism other than ATP-driven back-transfer of electrons to QA may be responsible for the phenomenon. It is suggested that the fast phase in Fv dark-decay kinetics represents the reoxidation of QA (-) by the electron-transport chain to PSI, whereas the slow phase is likely to be related to the interaction of QA (-) with the donor side of PSII.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.