Abstract
This seems to be an abstract or summary of a paper on monitoring Twitter for damage assessments after a disaster. Using simple linear regression and Support Vector Regression methods for weighting and the random forest methodology for classification, the research provides a novel approach that makes use of low-level lexical characteristics, top-most frequency word features, and syntactic elements relevant to damage assessment. The accuracy of the suggested method for identifying damage assessment tweets is 94.62%, as measured across 14 typical disaster datasets for binary and multi-class categorization. Significant advancements were observed when comparing the proposed method to the state-of-the-art for both in-domain and cross-domain scenarios. The suggested method does not require labelled tweets or tweets of a specific disaster kind in order to be trained and implemented; instead, it can be trained on historical disaster datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Research in Science, Communication and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.