Abstract

Anaerobic digestion is a waste-to-energy conversion process that offers potential economic and environmental benefits of organic waste diversion and renewable energy generation. However, these systems are often not feasible for small-to-medium size food processors, due to the significant capital investment involved. The key objective of this study is to identify the volume and composition of dairy manure and liquid-phase food manufacturing waste streams available in New York State (NYS) to make co-digestion of multiple feedstocks in centralized anaerobic digester facilities an economically attractive alternative. Organic waste volume and property data were obtained via Freedom of Information Law (FOIL) requests at the county and municipal levels for each of the 62 counties in NYS. Spatial analyses of dairy confined animal feeding operations (CAFO) locations relative to food manufacturing facility locations were analyzed using Microsoft MapPoint imaging software, which identified concentrations of high strength liquid-phase waste in the upstate corridor extending between Buffalo and Albany. The results show that if anaerobically digested, dairy CAFO manure and food manufacturing waste can contribute significantly to the State’s renewable energy portfolio. A laboratory scale two-phase anaerobic digester (bioDrillTS-AD200©) can help establish the correlation between waste properties (e.g. total solids, etc.) and quantity and quality of biogas produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call