Abstract

AbstractIn reluctance and permanent magnet synchronous machines, flux barriers are crucial for magnetic flux guidance. Designed as cutouts, flux barriers reduce the mechanical strength of the rotor construction. To operate these electric drives at higher rotational speed, an alternative flux barrier design is required. Since residual stress influences the magnetic properties of soft magnetic materials, this paper deals with embossing induced residual stress as flux barriers in non-oriented electrical steel with 2.4 wt% silicon and a sheet thickness of 0.35 mm. The investigated flux barriers were fabricated with a cylindrical or spherical punch at two different penetration depths and were compared to a flux barrier fabricated as cutout. A residual stress analysis using finite element analysis helps understanding the mechanism of embossed flux barriers. Additionally, the influence of induced residual stress on the magnetic material behavior is measured using standardized single sheet tests and neutron grating interferometry measurements. This investigation aimed at a better understanding of the flux barrier design by local induction of residual stress.KeywordsElectric driveElectrical steelMagnetic flux barrierEmbossingImprintResidual stress

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.