Abstract

Cylinder drying of cut tobacco is one of the key processing technologies in cigarette manufacturing. And complex mass transfer and heat transfer phenomena were involved. In this paper, a thermodynamic model have been built for cut tobacco during cylinder drying process. The relationship of different process parameters and thermodynamic data were analyzed by canonical correlation method, including amount of heat Qv produced in moisture evaporation of cut tobacco, amount of heat Qs produced in temperature increase of cut tobacco, total amount of heat Q and thermal efficiency coefficient η. The results showed that the thermodynamic model explained the actual cut tobacco heating and heat distribution well in the cylinder drying process. The variation coefficients of the four thermodynamic parameters of cut tobacco under the same processing conditions were all less than 5.0%. It is proved that the thermodynamic model established during cylinder drying process of cut tobacco is feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.