Abstract
Current DNA compression algorithms rely on finding repetitions within the DNA sequence so that similar subsequences can be encoded by referencing to each other. We explore similarities between different chromosomes of the sequence 'Saccharomyces cerevisiae'. These similarities are characterised by the existence of similar subsequences among different chromosomes. The longer the similar subsequences are, the higher the cross-similarities are. Our study indicates that these cross-sequence similarities are often significant as compared to self-sequence similarity. This implies that it would be advantageous to compress two or more chromosome sequences together so that similar subsequences found between multiple chromosome sequences can be encoded together.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Aided Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.