Abstract

Purpose- The purpose of this study was to compare the fit of two prototype liquid cooled vests using a 3D body scanner and accompanying software. The objectives of this study were to obtain quantitative measurements of ease values, and to use these data to evaluate the fit of two cooling vests in active positions and to develop methodological protocol to resolve alignment issues between the scans using software designed for the alignment of 3D objects. Design/methodology/approach- Garment treatments and body positions were two independent variables with three levels each. Quantitative dataset were dependent variables, and were manipulated in 3x3 factorial designs with repeated measures. Scan images from eight subjects were used and ease values were obtained to compare the fit. Two different types of analyses were conducted in order to compare the fit using t-test; those were radial mean distance value analysis and radial distance distribution rate analysis. Findings- Overall prototype II achieved a closer fit than prototype I with both analyses. These were consistent results with findings from a previous study that used a different approach for evaluation. Research limitations/implications- The main findings can be used as practical feedback for prototype modification/selection in the design process, making use of 3D body scanner as an evaluation tool. Originality/value- Methodological protocols that were devised to eliminate potential sources of errors can contribute to application of data from 3D body scanners.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call