Abstract

The pantograph-catenary system is used in modern electrified railways to power electric trains. Common sense is that the increase of train speed leads to a deterioration of the interaction performance. But recent studies indicate that a higher speed may result in a better performance in some local speed regions. This paper is the first attempt to provide a theoretical explanation for this phenomenon. A validated pantograph-catenary model is built to reproduce this phenomenon. Referring the definition of critical speed in moving load problems, the catenary's critical speed is defined. The wavelength components can be extracted through the Fourier transformation to the contact wire's vertical mode shape. The speed that satisfies the resonance condition can be regarded as the potential critical speed. The corresponding contact wire amplitude is further evaluated to determine the critical speeds at a given mode. The analysis indicates that a good interaction performance happens when the speed falls in the transition procedure between the critical two speeds. Based on this idea, a simple indicator that describes the overall contribution of all modes subjected to a moving pantograph at a given speed is proposed to facilitate the determination of the local optimal speed. The variation of the proposed indicator with respect to the speed shows good consistency with the trend of the simulation results. The main finding in this paper can be used in the design phase to determine the optimal speed of the pantograph-catenary system in a local speed range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call