Abstract

In steel structure systems such as plate girder bridges and framed structures, fatigue damage used to occur at welded areas rather than primary structural members. These damages and behaviors of the welded attachments need to be extensively investigated so that the fatigue design criterion can effectively control the fatigue damage of steel structure systems. This study utilized a full-scale plate girder on which various welding attachments were mounted. The welded attachments investigated herein included flange gussets, web gussets, vertical stiffeners, and cover plates. The fatigue cracks initiated at the longitudinal end of joint area of the weld bead and the parent metal where stress was significantly concentrated. The initiated fatigue cracks developed along the weld path and then, propagated to the parent metal in the direction perpendicular to the principal stress. The fatigue cracks developed even under a compressive stress when a significant residual stress was experienced from the welding. The fatigue strengths of the each welded attachment were evaluated and compared with the current fatigue design specifications in AASHTO [1] and JSSC [2].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.