Abstract
In recent years, interest in early age concrete cracking has increased due to its effects on the durability and performance of concrete structures. A time-dependent material model and a structural analysis method have been developed to evaluate thermal cracking behavior. To simulate such behavior at early ages, a solidified constitutive model is proposed, which is based on the solidification concept with dependence on time and strain histories. The unified numerical model consists of a Rigid-Body-Spring Network, representing the structural behavior, combined with a truss model to represent heat transfer. Wall concrete structures are analyzed to verify the solidified constitutive model and the overall approach. The proposed model results and the experimental results show reasonable agreement in terms of cracking behavior, stress distributions and structural deformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.