Abstract

The formation of crack patterns in drying starch-water slurries is studied by means of in-situ radiography (measuring of the crack front velocity) and X-ray microtomography as an example of crack patterns driven by inhomogeneous shrinkage. The tomograms show the 3D crack networks forming columns with polygonal cross-sections. After crack initiation, the average crack spacing increases with growing depth, even if the crack front velocity is constant. A constant velocity is obtained by maintaining a constant evaporation rate using a feedback control. When the crack front has propagated at a constant evaporation rate over a distance of some millimeters, the average crack spacing approaches a stable value which depends on crack front velocity according to a power law. This relationship is compared to corresponding results of other authors and model predictions. The increase of crack spacing before stable values are achieved, is interpreted as a result of successive crack front instabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.