Abstract

Cotton (Gossypium hirsutum) resistance to root-knot nematode (RKN) (Meloidogyne incognita) is controlled by quantitative trait loci (QTLs) on chromosomes 11 (CHR11) and 14 (CHR14). The individual contributions of these QTLs to resistance are not completely understood. We developed near isogenic lines susceptible at both loci (null), having CHR11 or CHR14 alone, and having both QTLs (CHR11/CHR14). RKN reproduction, postinfection development, egg mass formation, and adult female fecundity were evaluated. Total RKN reproduction was reduced more in CHR14 versus CHR11 but not as greatly as in CHR11/CHR14. Second-stage juvenile (J2) development to the J3 and J4 (J3+J4) life stages was delayed in CHR11, whereas the J2 transition to J3+J4 in CHR14 followed a similar track as in null plants. Development of J3+J4 nematodes to adult females was inhibited in CHR14 at 21 days after inoculation (DAI). Adult female numbers were decreased in CHR11 and CHR14 at 21 and 28 DAI, with CHR11/CHR14 showing an even greater reduction by 28 DAI. The number of egg masses per gram of root at 21, 28, and 35 DAI formed on CHR11 and CHR14 followed a similar track as numbers of adult females. RKN adult female fecundity (eggs/egg mass) was reduced for CHR11 and CHR14 compared with the null at 21 DAI; however, CHR11 eggs/egg mass was only slightly reduced versus the null by 28 DAI. In contrast, CHR14 eggs/egg mass was like CHR11/CHR14, showing a 4-fold decrease compared with CHR11 and the null.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call