Abstract

Estimation in logistic-normal models for correlated and overdispersed binomial data is complicated by the numerical evaluation of often intractable likelihood functions. Penalized quasilikelihood (PQL) estimators of fixed effects and variance components are known to be seriously biased for binary data. A simple correction procedure has been proposed to improve the performance of the PQL estimators. The proposed method is illustrated by analyzing infectious disease data. Its performance is compared, by means of simulations, with that of the Bayes approach using the Gibbs sampler.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.