Abstract

Measurements of the intensities and spectral line profiles of resonantly scattered hydrogen Ly-alpha radiation have been used to determine hydrogen kinetic temperatures and electron densities between r = 1.5 and 2.2 solar radii in a polar region of the corona observed in 1979 near solar maximum. The mean temperature, 1.8 x 10 to the 6th K, in this region is significantly higher, by about 60 percent, than that obtained in a similar region observed in a 1980 rocket flight. The densities in these two polar regions are similar and are a factor of about 4 larger than in polar coronal holes observed at solar minimum. The flow velocities in both regions are most likely subsonic for r less than about 4 solar radii. The results reported here support the hypothesis that polar coronal holes observed at different times during the solar cycle can have different temperatures, densities, and possibly flow velocities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call