Abstract

Critical experiments were performed in the REBUS program on a core loaded with a test bundle including 16 irradiated BWR-type MOX rods of average burnup of 61 GWd/t. The experimental data were analyzed using diffusion, transport, and continuous-energy Monte Carlo calculation codes coupled with nuclear data libraries based on JENDL-3.2 or JENDL-3.3. Biases in effective multiplication factors of the critical cores were −1.0%Δk for the diffusion calculations (JENDL-3.2), −0.3%Δk for the transport calculations (JENDL-3.3), and 0.2%Δk for the Monte Carlo calculations (JENDL-3.2). The measured core fission rate and co-activation rate distributions were generally well reproduced using the three types of calculations. The burnup reactivity determined using the measured water level reactivity coefficients was −2.41 ± 0.08%Δk/kk’, which also agreed with the results of the three type of calculations within the measurement and calculation errors. The most probable isotopic inventories in the irradiated MOX rods was tentatively obtained by using the ratios of the calculation to chemical assay data on a pellet sample, and the burnup reactivity was reanalyzed to split the calculation error into those due to the inventory and reactivity calculations. This approach showed that the inventory calculation error compensated the reactivity calculation error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.