Abstract

AbstractThe interaction of quinacrine with calf thymus DNA was monitored at several different ionic strengths using spectrophotometric and equilibrium dialysis techniques. The binding results can be explained, assuming each base pair is a potential binding site, using a model containing two negative cooperative effects: (1) ligand exclusion at binding sites adjacent to a filled binding site and (2) ligand–ligand negative cooperativity at adjacent filled binding sites. The logarithm of the observed equilibrium constant (Kobs) determined by this model varies linearily with log[Na+], as predicted by the ion condensation theory for polyelectrolytes. When the log Kobs plot is correlated for sodium release by DNA in the intercalation conformational change, the predicted number of ion pairs between the ligand and DNA is approximately two, as expected for the quinacrine dication. Even though Kobs depends strongly on ionic strength, the ligand negative cooperativity parameter ω was found to be indpendent of ionic strength within experimental error. This finding is also in agreement with the ion condensation theory, which predicts a relatively constant amount of condensed counterion on the DNA double helix over this ionic strength range. Drugs would, therefore, experience a relatively constant ionic environment when complexed to DNA even though the ionic conditions of the solvent could change considerably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.