Abstract

In this paper, a Convolutional Recurrent Neural Network (CRNN) model is designed to classify the patients with COVID-19 infections. The CRNN model is designed to identify the Computerised Tomography (CT) images. The processing of CRNN is modelled with input image processing and feature extraction using CNN and prediction by RNN model that quickens the entire process. The simulation is carried with a set of 226 CT images by varying the training-testing accuracy on a tenfold cross-validation. The accuracy in estimating the image samples is increased with increased training data. The results of the simulation show that the proposed method has higher accuracy and reduced MSE with higher training data than other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.