Abstract
Stress-induced surface acoustic wave velocity shifts are analyzed for langasite (LGS) SAW resonators. The analytical methodology has been verified by comparing experimental results and analytical results for quartz resonators. LGS SAW resonators with Euler angles which are most sensitive and least sensitive to diametrical forces are determined and their applications in force sensors and resonators with minimum acceleration sensitivity are discussed. Sensitivity of the analytical results to different groups of nonlinear material constants is discussed; it was found that for specific configurations, failure to include the third-order piezoelectric constants, dielectric constants and electrostrictive constants may lead to a significant calculation error. Surface acoustic waves propagating on an LGS square plate subject to bending moment along the propagation direction and normal to the propagation direction are analyzed; it was found that the average momentinduced velocity shift of LGS resonators are comparable to quartz resonators. Analyses of the sensitivity of the results to different groups of nonlinear material constants shows that for some specific wave propagation directions, failure to include the third-order piezoelectric constants, dielectric constants, and electrostrictive constants may lead to large errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.