Abstract

The flow of individual corpuscles through retinal capillaries may now be observed noninvasively by using adaptive optics (AO). To explore their imaging properties, we imaged retinal capillary flow in two healthy subjects at 593 nm with a flood-based AO ophthalmoscope, at a variety of retinal locations and levels of defocus. The image intensity of red cells and plasma depends upon capillary depth relative to focus: red cells appear brighter than background, and plasma darker, for capillaries posterior to focus. The reverse is true for capillaries anterior to focus. Contrast reversals were obtained over 0.05 D (∼14 μm), which are well within the typical undulations in depth of retinal capillaries. We relate these observations to phase-contrast defocusing microscopy. This defocusing effect confounds flow measurements, which rely on correlation of image intensity between successive locations along the same capillary, a requirement made further difficult by high physiological variability in flow. Peak correlation was maintained >0.25 over a distance of 22±15 μm (roughly the spacing between red cells) and over a duration of 154±49 ms (roughly eight times the temporal period between red cells). We provide a 2D correlogram approach that significantly improves robustness in the face of optical and physiological variability, compared to the traditional spatiotemporal plot, without requiring additional data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.