Abstract

The process of Δ T-driven contact melting of the solid phase change material (PCM) around a horizontal elliptical cylinder heat source is analyzed. Aiming at the problem existed in the published literature, namely the thickness of boundary layer tends to be infinite at ϕ = 90°, and considering the difference of normal angle between the horizontal elliptical cylinder surface and the solid–liquid interface of PCM, a new mathematic model is proposed, and the fundamental equations for the melting process are derived with the film theory. The new pressure distribution inside the boundary layer, the variation law of normal angle of the solid–liquid interface, the thickness of the boundary layer and the relationship between the melting velocity and resultant force are obtained. The solutions of the fundamental equations under different elliptical compression coefficients are analyzed and discussed. It is found that the thickness of the boundary layer obtained by the new model is a finite value and accords with the experimental result at ϕ = 90°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.