Abstract

An effective modelling method for analysing the contact creep behaviour of composite materials with different nanofillers was proposed. Considering both the contact and creep material nonlinearities, an augmented Lagrangian algorithm was used to treat the unilateral contact constraints, and a time-hardening creep constitutive equation was adopted to describe the deformation characteristics of the nanocomposites. The constitutive parameters were extracted through a series of linear fittings based on the multiaxial creep theory and creep test curves, and the accuracy of the constitutive equation was validated. The applications of the proposed modelling method were demonstrated using a rope-wheel contact system (RWCS), in which the wheels were made of polystyrene (PS) with carbon black (CB), multi-walled carbon nanotubes (MWCNT), or chemically reduced graphene oxide (CRGO). The results indicated that the addition of nanofillers significantly reduced the creep deformation of the contact zone. The CRGO exhibited a better anti-creep performance than that of CB and MWCNT. Compared with pure PS, the maximum deformation on the contact path of the nanocomposite wheel with 5.0 wt% CRGO sheets at 1500 s and 104 s was reduced by approximately 22 % and 52 %, respectively. The coefficient of friction μ had a strong influence on the contact creep deformation when μ < 0.3. Additionally, the anti-creep capability of the added nanofillers became more evident as the loading time increased. The contact creep deformation of the CRGO composite was less than one-tenth that of the matrix material after 30 d.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call