Abstract

The creep response phenomena observed on 47 human intervertebral discs subjected to a constant axial compressive stress was analytically studied by two-, three- and four-parameter-solid models employing the Burns-Kaleps ‘exact analysis scheme’. The mechanical properties (Young's moduli and viscosity coefficients) associated with each model were calculated for each of the 47 disks, with superior results obtained for the latter two models. Results for the two-parameter-solid model suggest its possible usefulness in simulating creep response that is characteristic of disk degeneration. Results for the three- and four-parameter-solid models were excellent, with an average error for the model predicted strain, ε( l i ) cal , values from the experimentally measured, ε( t i ) exp , values of 2.314% for the former model and 4.446% for the latter model on the 47 human spinal segments analyzed. The three-parameter-solid model was most sensitive in its predictability of strain behavior for t i > 1 min; whereas the four-parameter-solid model demonstrated greater simulation sensitivity in the 0 < t i ≤ 1 min range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.