Abstract

Objective:To construct a competitive endogenous RNA (ceRNA) regulatory network derived from exosomes of human breast cancer (BC) by using the exoRbase database, to explore the possible pathogenesis of BC, and to develop new targets for future diagnosis and treatment.Methods:The exosomal gene sequencing data of BC patients and normal controls were downloaded from the exoRbase database, and the expression profiles of exosomal mRNA, long non-coding RNA (lncRNA), and circular RNA (circRNA) were analyzed by using R language. Use Targetscan and miRanda database to jointly predict and differentially express miRNA (microRNA), miRNA combined with mRNA. The miRcode database was used to predict the miRNA combined with differentially expressed lncRNA, and the starBase database was used to predict the miRNA combined with circRNA in the difference table. The related mRNA, circRNA, lncRNA, and their corresponding miRNA prediction data were imported into Cytoscape software to visualize the ceRNA network. Enrichment analysis and visualization of KEGG were carried out using KOBAS. Hub gene was determined by Cytohubba plug-in.Results:Forty-two differentially expressed mRNA, 43 differentially expressed circRNA, and 26 differentially expressed lncRNA were screened out. The ceRNA network was constructed by using Cytoscape software, including 19 mRNA nodes, 2 lncRNA nodes, 8 circRNA nodes, and 41 miRNA nodes. KEGG enrichment analysis showed that differentially expressed mRNA in the regulatory network mainly enriched the p53 signaling pathway. Find the key Hub gene PTEN.Conclusion:The ceRNA regulatory network in blood exosomes of BC patients has been successfully constructed in this study, which provides an exact target for the diagnosis and treatment of BC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call