Abstract

In this work, we analyze compensating defects which are formed after implantation of aluminum (Al) into n-type 4H-SiC epitaxial layers and subsequent thermal annealing. These defects reduce the expected free charge carrier density by 84% for a low doped layer with [Al]impl ≈ 9ž·1016 cm-3 and by 27 % for a high doped layer with [Al]impl ≈ 2·ž1019 cm-3. Furthermore, an electrical activation ratio of implanted aluminum ions of 100 % is calculated. The ionization energy of implanted aluminum as measured by Hall effect and admittance spectroscopy ranges from 101 meV to 305 meV depending on the doping concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call