Abstract

We discuss the existence of compact stars in the context of [Formula: see text] gravity model, where additional logarithmic corrections are assumed. Here, [Formula: see text] is the Ricci scalar and [Formula: see text], [Formula: see text] are constant values. Further, the compact stars are considered to be anisotropic in nature, due to the spherical symmetry and high density. For this purpose, we derive the Einstein field equations by considering Krori–Barua spacetime. For our proposed model, the physical acceptability is verified by employing several physical tests like the energy conditions, Herrera cracking concept and stability condition. In addition to this, we also discuss some important properties such as mass–radius relation, surface redshift and the speed of sound are analyzed. Our results are compared with observational stellar mass data, namely, 4U 1820-30, Cen X-3, EXO 1785-248 and LMC X-4. The graphical representation of obtained solutions provide strong evidences for more realistic and viable stellar model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call