Abstract

Seamounts can have strong influence on the dynamics and production of waters surrounding them, sometimes creating a kind of oasis effect. To assess to what depths and under what conditions this effect may persist on seamounts, we analysed the fauna and recent history of the Valencia Seamount (VS), a deep, small seamount (summit depth: 1056 m) from an oligotrophic zone of the Mediterranean Sea. The (living) epibenthic fauna of the VS summit (up to 1300 m) was composed of filter feeders, surface deposit feeders and carnivores (63 species), structured in a trophic chain as indicated by the high positive relationship (r2 0.502) between the δN15and δC13 of the fauna analysed. This trophic linearisation (compared with Catalan and NW Mallorca slope sites at similar depths) may optimise the energy flux reaching the seamount, with rather high %TOC (0.93–1.19%) and C/N (5.0–5.5) in July. The Valencia Seamount can also act as a reservoir zone for fish (grenadiers: Nezumia aequalis, and Hymenocephalus italicus) and shrimps (Plesionika martia), which are distributed at shallower depths on adjacent slopes, where they are exploited. The specimens caught were mainly juveniles, suggesting that these species may rather form pseudopopulations. Tuna and cetaceans were regularly sighted on the surface of VS during a specific period of the year (June–July). Reconstructing the recent history of Valencia Seamount (MC2 sediment core taken at 1151 m in 2021) we evidenced a decline of zooplankton pteropods (primary consumers) since ca. the 1960s (MC2 dating after 210Pb, metals and microplastic analyses), linked to a decline of Si in sediments suggesting a decrease in primary production due to a decrease in rainfall and river runoff. An increase of vorticity (ω+ values), i.e. of cyclonic gyres, and currents after the 1970s over the summit probably increased resuspension of organic matter, which in turn may enhance zooplankton aggegations at VS summit. We hypothesise that this would explain the parallel increase in mesopelagic myctophids in MC2 (from otolith records). Sediments of the Valencia seamount recorded several historical changes. Reconstruction studies carried out in oceanic areas can therefore help to understand the history and improve the management of fragile systems such as seamounts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.