Abstract
The search for sustainable renewable source of fibre is the need of the hour for the textile industry. In this aspect, milkweed fibres are considered to be one of the potential fibre crops. Plated knit fabrics are designed and engineered with correct selection of fibre and yarn constituents in the distinct bottom and top layer (next to sin) can serve well for next-to-skin applications. In this research work, the potential application of milkweed/polyester plated knitted fabrics for next-to-skin end uses were analysed by changing the inner and outer layers of plated fabrics and with different polyester/milkweed blend proportion. From the results of various moisture management indices of plated knitted fabrics, it is observed that except polyester/polyester and polyester/60% milkweed samples, which are exhibited as water penetration fabric, all other samples are showed as moisture management fabric. The hydrophobic fibre (polyester) in the top layer and hydrophilic fibres (milkweed) in the bottom layer exhibits higher bottom absorption rate, bottom spreading speed and one-way liquid transport leading to higher overall moisture management index. By considering the moisture management indices and grades of various samples, it could be observed that the plated fabric made from 40% milkweed/polyester could be an efficient moisture management fabric when used in either-way compared with other fabrics. One-way analysis of variance carried out at 95% confidence level showed that the results are statistically significant. The pair wise strength and association between various moisture management indices was analysed using Pearson correlation coefficient and observed that one-way transport capacity and overall moisture management capacity was found to be positively and linearly related to each other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.