Abstract
ABSTRACTApplication of the lattice Boltzmann method (LBM) in solving a combined mode conduction, convection, and radiation heat transfer problem in a porous medium is extended. Consideration is given to a 1-D planar porous medium with a localized volumetric heat generation zone. Three particle distribution functions, one each for the solid temperature, the gas temperature, and the intensity of radiation, are simultaneously used to solve the gas- and the solid-phase energy equations. The volumetric radiation source term appears in the solid-phase energy equation, and it is also computed using the LBM. To check the accuracy of the LBM results, the same problem is also solved using the finite volume method (FVM). Effects of convective coupling, flow enthalpy, solid-phase conductivity, scattering albedo porosity, and emissivity on axial temperature distribution are studied and compared with the FVM results. Effects of flow enthalpy, solid-phase conductivity, and emissivity are also studied on radiative output. LBM results are in excellent agreement with those of the FVM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.