Abstract
Ultrasonic comb transducer generates surface acoustic waves on an elastic substrate by periodic traction exerted by its vibrating periodic teeth on the substrate surface . In this paper, the comb teeth are actually sliding elastic spacers between an acoustic buffer and the substrate. The incident wave in acoustic buffer scatters on periodic spacers producing interface waves in the system which transform into Rayleigh waves at the transducer edges. The full-wave theory of interface wave generation is presented, concluded by efficiency estimation of transformation of the incident wave into the surface wave in the substrate and of the surface waves back to bulk waves in the acoustic buffer. Numerical examples presented for all aluminum substrate , buffer and teeth show the 11-teeth comb combined efficiency for generation and detection on the level of −40 dB for optimized teeth height.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.