Abstract

The paper analyzes possible transmission schemes for satellite personal communication systems adopting low/medium-Earth orbit (LEO/MEO) constellations and direct-sequence code division multiple access (DS-CDMA) in the presence of fading and shadowing, the statistics of which are functions of the satellite elevation angle. In particular, the performance of M-ary Walsh-Hadamard orthogonal (MWHO) convolutionally coded DS-CDMA over a Rice-log-normal fading channel is analyzed in depth, and compared to the simpler coded differential BPSK (DBPSK) scheme. Optimization of the performance/complexity tradeoff in the metric computation for soft inputs to the Viterbi (1979) decoder is addressed. Upper bounds on the error probability without or with satellite diversity and equal gain combining are evaluated considering different coding rates. The effect of correlated fading is also taken into account via simulation. Among the various results, it is shown that the optimal coding rate is a function of the satellite elevation angle and of the diversity order, that the loss for using DBPSK instead of MWHO is in the range 1-1.4 dB, and that interleaving depth is a critical parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.