Abstract

Both carbamation and bicarbonation are of prime importance in the absorption reactions of CO 2 in an aqueous NH 3 solution, as they are related to the CO 2 working capacity, regeneration energy, and the critical problem of blocking the gas pathway for the CO 2 capture process. Herein, the influence of reaction temperature on the CO 2 and NH 3 reaction in an aqueous solution is demonstrated by a principal component analysis (PCA) and a two dimensional correlation analysis (2D IR COS) obtained from FT-IR, dependent on the reaction time. In contrast to the reaction at 298 K, conversion of the dominant reaction from carbamation to bicarbonation and respective conformational changes were observed at 278 K by PCA and 2D IR COS. The PCA results elucidate that two major reactions following the dependence of reaction time were divided into two regions, I and II. The turnover point was subsequently tracked in these two regions, where precipitation of ammonium bicarbonate occurred due to the limitation of solubility at this turning point. The interrelation and sequential variation of conformations in regions I and II were investigated by synchronous and asynchronous 2D correlation analyses. The combination of PCA and 2D IR COS provides a powerful and useful analytic method to capture and monitor the dynamics of complex chemical reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.