Abstract

In this paper, the general focal length function is used to design two-dimensional closed-boundary cylindrical microlenses (CBCMs) with long focal depth. The focusing characteristics of the designed microlenses is investigated by rigorous electromagnetic theory and the boundary element method. A number of focusing performance measures of the designed microlenses, such as the real focal depth, the focal depth range, the focal spot size, and the diffraction efficiency, are presented in detailed. As comparison, the focusing performance of the conventional lenses with the same parameters are investigated simultaneously. Our analysis indicates that the general focal length function is valid in designing CBCMs with larger extended focal depth. Comparing with the open-boundary cylindrical microlenses (OBCMs) designed using the same focal length function, we also find that the designed CBCMs with low f-number exhibit superiority of long focal depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call