Abstract

To analyze the clinical features and pathological mutations in 44 families affected with hearing loss from southern Zhejiang, and to provide genetic counseling and prenatal diagnosis for 6 of the families. Microarray was employed to detect c.35delG, c.176del16, c.235delC and c.299-300delAT mutations of the GJB2 gene among 228 patients. For those carrying a single heterozygous mutation, the whole coding region of the GJB2 gene was analyzed by Sanger sequencing. For prenatal diagnosis, maternal DNA contamination was excluded by application of STR analysis. The microarray assay has detected 49 patients with GJB2 mutations, which included 24 homozygous c.235delC mutations, 5 compound heterozygous c.235delC/c.176del16 mutations, 2 compound heterozygous c.235delC/c.299-300delAT mutations. Respectively, 16, 1 and 1 patients have carried single heterozygous c.235delC, c.176del16, and c.299-300delAT mutation. For the 16 patients, 7, 1, 1, 2, and 3 were detected by Sanger sequencing with a second heterozygous mutation of c.109G>A (2 of which were in conjunction with heterozygous c.176del16 and c.299-300delAT mutations), c.230G>A, c.427C>T, c.508-511 dupAACG, 79G>A+341A>G, respectively. Prenatal diagnosis revealed a compound heterozygous mutation in a fetus, heterozygous mutations in 4 fetuses, and no mutation of the GJB2 gene in 1 fetus. The proportion of carriers for GJB2 gene mutations in patients with hearing loss from southern Zhejiang has reached 21.5%. The c.235delC, c.176del16, and compound c.299-300delAT and c.109G>A mutations can cause moderate to severe hearing loss. In most affected families, Heterozygous mutations may be identified by sequencing the whole coding region of the GJB2 gene. Genetic analysis and prenatal diagnosis can prevent birth of further affected children.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call